9.2: Inscribed angle (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    23634
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We say that a triangle is inscribed in the circle \(\Gamma\) if all its vertices lie on \(\Gamma\).

    Theorem \(\PageIndex{1}\)

    Let \(\Gamma\) be a circle with the center \(O\), and \(X, Y\) be two distinct points on \(\Gamma\). Then \(\triangle XPY\) is inscribed in \(\Gamma\) if and only if

    \[2 \cdot \measuredangle XPY \equiv \measuredangle XOY.\]

    Equivalently, if and only if

    \(\measuredangle XPY \equiv \dfrac{1}{2} \cdot \measuredangle XOY\) or \(\measuredangle XPY \equiv \pi + \dfrac{1}{2} \cdot \measuredangle XOY.\)

    Proof

    9.2: Inscribed angle (2)9.2: Inscribed angle (3)9.2: Inscribed angle (4)

    the "only if" part. Let \((PQ)\) be the tangent line to \(\Gamma\) at \(P\). By Theorem 9.1.1,

    \(2 \cdot \measuredangle QPX \equiv \measuredangle POX\), \(2 \cdot \measuredangle QPY \equiv \measuredangle POY.\)

    Subtracting one identity from the other, we get 9.2.1.

    "If" part. Assume that 9.2.1 holds for some \(P \not\in \Gamma\). Note that \(\measuredangle XOY \ne 0\). Therefore, \(\measuredangle XPY \ne 0\) nor \(\pi\); that is, \(\measuredangle PXY\) is nondegenerate.

    The line \((PX)\) might be tangent to \(\Gamma\) at the point \(X\) or intersect \(\Gamma\) at another point; in the latter case, suppose that \(P'\) denotes this point of intersection.

    In the first case, by Theorem 9.1, we have

    \(2 \cdot \measuredangle PXY \equiv \measuredangle XOY \equiv 2 \cdot \measuredangle XPY.\)

    Applying the transversal property (Theorem 7.3.1), we get that \((XY) \parallel (PY)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    In the second case, applying the "if" part and that \(P, X\), and \(P'\) lie on one line (see Exercise 2.4.2) we get that

    \(\begin{array} {rcl} {2 \cdot \measuredangle P'PY} & \equiv & {2 \cdot \measuredangle XPY \equiv \measuredangle XOY \equiv} \\ {} & \equiv & {2 \cdot \measuredangle XP'Y \equiv 2 \cdot \measuredangle XP'P.} \end{array}\)

    Again, by transversal property, \((PY) \parallel (P'Y)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    Exercise \(\PageIndex{1}\)

    Let \(X, X', Y\), and \(Y'\) be distinct points on the circle \(\Gamma\). Assume \((XX')\) meets \((YY')\) at a point \(P\). Show that

    (a) \(2 \cdot \measuredangle XPY \equiv \measuredangle XOY + \measuredangle X'OY'\);

    (b) \(\triangle PXY \sim \triangle PY'X'\);

    (c) \(PX \cdot PX' = |OP^2 - r^2|\), where \(O\) is the center and \(r\) is the radius of \(\Gamma\).

    9.2: Inscribed angle (5)

    (The value \(OP^2 - r^2\) is called the power of the point \(P\) with respect to the circle \(\Gamma\). Part (c) of the exercise makes it a useful tool to study circles, but we are not going to consider it further in the book.)

    Hint

    (a) Apply Theorem \(\PageIndex{1}\) for \(\angle XX'Y\) and \(\angle X'YY'\) and Theorem 7.4.1 for \(\triangle PYX'\).

    (b) If \(P\) is inside of \(\Gamma\) then \(P\) lies between \(X\) and \(X'\) and between \(Y\) and \(Y'\) in this case \(\angle XPY\) is vertical to \(\angle X'PY'\). If \(P\) is outside of \(\Gamma\) then \([PX) = [PX')\) and \([PY) = [PY')\). In both cases we have that \(\measuredangle XPY = \measuredangle X'PY'\).

    Applying Theorem \(\PageIndex{1}\) and Exercise 2.4.2, we get that

    \(2 \cdot \measuredangle Y'X'P \equiv 2 \cdot \measuredangle Y'X'X \equiv 2 \cdot \measuredangle Y'YX \equiv 2 \dot \measuredangle PYX.\)

    According to Theorem 3.3.1, \(\angle Y'X'P\) and \(\angle PYX\) have the same sign; therefore \(\measuredangle Y'X'P = \measuredangle PYX\). It remains to apply the AA similarity condition.

    (c) Apply (b) assuming \([YY']\) is the diameter of \(\Gamma\).

    Exercise \(\PageIndex{2}\)

    Three chords \([XX']\), \([YY']\), and \([ZZ']\) of the circle \(\Gamma\) intersect at a point \(P\). Show that

    \(XY' \cdot ZX' \cdot YZ' = X'Y \cdot Z'X \cdot Y'Z.\)

    9.2: Inscribed angle (6)

    Hint

    Apply Exerciese \(\PageIndex{1} b three times.

    Exercise \(\PageIndex{3}\)

    Let \(\Gamma\) be a circumcircle of an acute triangle \(ABC\). Let \(A'\) and \(B'\) denote the second points of intersection of the altitudes from \(A\) and \(B\) with \(\Gamma\). Show that \(\triangle A'B'C\) is isosceles.

    9.2: Inscribed angle (7)

    Hint

    Let \(X\) and \(Y\) be the foot points of the altitudes from \(A\) and \(B\). Suppose that \(O\) denotes the circumcenter.

    By AA condition, \(\triangle AXC \sim \triangle BYC\). Then

    \(\measuredangle A'OC \equiv 2 \cdot \measuredangle A'AC \equiv - 2 \cdot \measuredangle B'BC \equiv - \measuredangle B'OC.\)

    By SAS, \(\triangle A'OC \cong \triangle B'OC\). Therefore, \(A'C = B'C\).

    Exercise \(\PageIndex{4}\)

    Let \([XY]\) and \([X'Y']\) be two parallel chords of a circle. Show that \(XX' = YY'\).

    Exercise \(\PageIndex{5}\)

    Watch “Why is pi here? And why is it squared? A geo- metric answer to the Basel problem” by Grant Sanderson. (It is available on YouTube.)

    Prepare one question.

    9.2: Inscribed angle (2024)

    References

    Top Articles
    'He was a predator': Julianna Margulies on her troubling encounter with Steven Seagal | CBC Radio
    Julianna Margulies | Biography, TV Shows, & Facts
    Wsbtv Fish And Game Report
    Pr 127 Seat Map
    Jody Plauche Wiki
    Wcco Crime News
    Dana Point: Your Ultimate Guide to Coastal Adventures
    Ann Taylor Assembly Row
    Basic Setup – OpenXR & Pimax HMDs...
    My.doculivery.com/Crowncork
    Minecraft Jenny Mod Dragon Staff
    Dr Frita Mcrae Fisher Husband
    Ta Travel Center Las Cruces Photos
    Rugged Gentleman Barber Shop Martinsburg Wv
    Elektrische Arbeit W (Kilowattstunden kWh Strompreis Berechnen Berechnung)
    Carlitos Caribbean Bar & Grill Photos
    Pcc Skilled Nursing Login
    10 Best-Performing Bi-Directional Scan Tools in 2023 (Full Control)
    Twitter Jeff Grubb
    Target Minute Clinic Hours
    Rugged Gentleman Barber Shop Martinsburg Wv
    Maurice hat ein echtes Aggressionsproblem
    What Jennifer Carpenter Has Been Doing Since Playing Debra Morgan On Dexter - Looper
    Leonards Truck Caps
    Liberty Prime Poster
    Penn Foster 1098 T Form
    Webcentral Cuny
    Sems Broward County
    Terraria Water Gun
    Perfect Coffee Shop Recipe Cool Math Games
    Landwatch Ms
    ACMG - American College of Medical Genetics and Genomics on LinkedIn: #medicalgenetics #genomics
    Venezuela: un juez ordena la detención del candidato opositor Edmundo González Urrutia - BBC News Mundo
    Late Bloomers Summary and Key Lessons | Rich Karlgaard
    Black Adam Showtimes Near Cinemark Texarkana 14
    Bolly4u Movies Site - Download Your Favorite Bollywood Movies Here
    Section 212 Metlife Stadium
    Kpq News Wenatchee Washington
    Craigslistwesternmass
    cGMP vs GMP: What's the Difference? | Ascendia Pharma
    Nashville Predators Wiki
    Sacramento Library Overdrive
    Kinda Crazy Craft
    Warranty Killer Performance Reviews
    Limestone Bank Hillview
    Subway Surfers Unblocked 76
    Transactions on Computational Social Systems - IEEE SMC
    Kieaira.boo
    Kgtv Tv Listings
    Lesson 2 Homework 4.1 Answer Key
    Dl 9672
    Amanda Balionis Renner Talks Favorite Masters Interviews, the Evolution of Golf Twitter, and Netflix’s ‘Full Swing’
    Latest Posts
    Article information

    Author: Lilliana Bartoletti

    Last Updated:

    Views: 5785

    Rating: 4.2 / 5 (73 voted)

    Reviews: 88% of readers found this page helpful

    Author information

    Name: Lilliana Bartoletti

    Birthday: 1999-11-18

    Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

    Phone: +50616620367928

    Job: Real-Estate Liaison

    Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

    Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.